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ABSTRACT

This study analyzes trends in precipitable water (PW) over land and ocean from 1988 to 2011, the PW–

surface temperature Ts relationship, and their diurnal asymmetry using homogenized radiosonde data,

microwave satellite observations, and ground-based global positioning system (GPS) measurements. It is

found that positive PW trends predominate over the globe, with larger magnitudes over ocean than over land.

The PW trend is correlated with surface warming spatially over ocean with a pattern correlation coefficient of

0.51. The PW percentage increase rate normalized by Ts expressed as d lnPW/dTs is larger and closer to the

rate implied by the Clausius–Clapeyron (C–C) equation over ocean than over land. The 2-hourly GPS PW

data show that the PW trend from 1995 to 2011 is larger at night than during daytime. Nighttime PWmonthly

anomalies correlate positively and significantly with nighttime minimum temperature Tmin at all stations, but

this is not true for daytime PW and maximum temperature Tmax. The ratio of relative PW changes with Tmin

(d lnPW/dTmin) is larger and closer to the C–C equation’s implied value of;7%K21 than d lnPW/dTmax. This

suggests that the relationship between PW and Ts at night is a better indicator of the water vapor feedback

than that during daytime, when clouds and other factors also influence Ts.

1. Introduction

Water vapor has the largest greenhouse effect on Earth’s

climate. However, the amount of water vapor in the at-

mosphere is controlled by air temperature, unlike other

greenhouse gases, which are controlled by emissions

(Myhre et al. 2013). Other greenhouse gases, primarily

CO2, impact the amount of water vapor in the atmo-

sphere through modulating the air temperature. The

strong coupling between water vapor content and air

temperature provides the basis for a strong positive

water vapor feedback that amplifies the initial temper-

ature changes induced by other greenhouse gases. Water

vapor also plays a key role in the atmospheric hydrological

cycle (Trenberth et al. 2003) by allowing winds to move

water around Earth and by providing the water source for

the formation of clouds and precipitation. It is also a key

component in the global energy cycle through surface

evaporationandatmospheric latent heating (Trenberth et al.

2009). Thus, it is important to understand water vapor var-

iability and change and its relationship with temperature.

Despite the important role of water vapor in Earth’s

climate, reliable data of atmospheric water vapor are

still lacking. Over the tropical oceans where long-term
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microwave satellite measurements are available, atmo-

spheric reanalysis products show precipitable water

(PW) trends that are different from the satellite data

from 1988 to 2012, and most climate models show much

larger PW trends than the satellite observations (Flato

et al. 2013), likely owing in part to different realizations

of internal climate variability in models and observa-

tions. When the relative humidity (RH) in the lower

troposphere stays constant, PW increases with air tem-

perature by about 7%K21 (referred to as the scaling

ratio) based on the Clausius–Clapeyron (C–C) relation

(Trenberth et al. 2005). On the decadal time scale, the

scaling ratio over the tropical oceans is tightly con-

strained in all model simulations but not in all obser-

vations and reanalyses (Mears et al. 2007; Flato et al.

2013). For the models, decadal-scale changes are due

to a combination of forced changes and natural vari-

ability, leading to a wide range of trends in both PW and

air temperature. Despite this, the models produce sim-

ilar ratios, suggesting that on large spatial scales, the

models are constrained by basic physics, as expected.

The scaling-ratio discrepancies found in some observa-

tions and reanalyses are likely due to unresolved in-

homogeneity in the observational data and/or reanalysis

products. It is more challenging over land where the

radiosonde humidity data are the main source of ob-

servations. Large errors in radiosonde humidity data

may have contaminated many of the reanalysis and

observational products (Dai et al. 2011). Dai et al. (2011,

2013) showed that the ERA-40 and NCEP–NCAR re-

analysis products, which used the unhomogenized ra-

diosonde temperature and humidity data, contain the

same spurious changes in atmospheric temperature and

water vapor seen in radiosonde station records. Thus,

most current gridded water vapor products are not

suitable for long-term change analyses, as the large in-

homogeneities in radiosonde data were not removed in

these analyses.

For the previous five Intergovernmental Panel for

Climate Change (IPCC) assessment reports (ARs),

only the last three show PW trendmaps. The IPCC third

AR (TAR) shows the trends at 214 radiosonde stations

in the Northern Hemisphere, while the fourth AR

(AR4) and fifth AR (AR5) only show the PW trends

over ocean using themicrowave satellite data. Overland

radiosonde and ground-based GPS measurements are

the primary data sources for PW. The inhomogeneity in

the radiosonde record hampers its usage for long-term

humidity trend estimates (e.g., Dai et al. 2011; Wang

et al. 2013). The GPS PW data are available on a global

scale only since the early 1990s and need to be pro-

cessed consistently through the period (e.g., Wang et al.

2007). As a result, the PW trend over land and its

relationship with temperature changes have not been

studied extensively.

There have been many studies on the diurnal asym-

metry in surface temperature trends, which show

stronger warming during nighttime than daytime (e.g.,

Karl et al. 1993; Easterling et al. 1997; Dai et al. 1999;

Wang and Gaffen 2001; Vose et al. 2005; Isaac and Van

Wijngaarden 2012). However, there have been only a

few studies on differential trends in subdaily surface

humidity, and they found stronger humidity trends at

night than during the day (Gaffen and Ross 1999; Dai

2006; Shiu et al. 2009). There have been no studies on

the diurnal asymmetry in precipitable water, partially

owing to a lack of high-resolution data.

In this study, we focus on answering the following

questions.

1) What is the best estimate of the global PW trend for

recent years from 1988 to 2011 and its spatial variability

over both land and ocean based on observations? To

answer this question, we make use of three unique PW

datasets—namely, the homogenized global radiosonde

humidity dataset (Dai et al. 2011), the 2-hourly GPS

PW dataset (Wang et al. 2007), and the newest version

of themicrowave satellite PWdata over oceans (Wentz

1997; Wentz et al. 2007).

2) CanPW interannual variability and trends be explained

by temperature changes on both global and regional

scales, and if so, how?Most of the previous studies have

used global-averaged time series to derive the scaling

ratio, which normally follows the C–C relation (e.g.,

Wentz and Schabel 2000; Trenberth et al. 2005; Mears

et al. 2007). Wagner et al. (2006) found that in the

extratropics, the PW from one satellite product and

surface temperature Ts for cloud-free conditions show

almost no correlation both in spatial patterns of trends

for 1996–2003 and in extratropical averaged monthly

anomalies. O’Gorman andMuller (2010) show that the

scaling ratio has significant spatial variability in climate

change simulations.

3) What is the diurnal asymmetry of the PW trend and

its relationship with Ts? One of the advantages of the

GPS PW data is their high temporal resolution,

which enables us to study the PW diurnal asymmetry

for the first time.

The datasets used in this study are described in section

2. Section 3 presents intercomparisons of PW trends and

global PW trend analysis among the different datasets.

This is followed by an analysis of correlation between

PW and Ts variability in section 4. Section 5 focuses on

the diurnal asymmetry of the PW trend and its re-

lationship withTs. A summary and conclusions are given

in section 6.
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2. PW datasets and analysis method

Three PW datasets are available from 1995 to 2011

and are used in this study. They include the 2-hourly

GPS PW dataset (Wang et al. 2007), homogenized ra-

diosonde (raob) dataset (Dai et al. 2011; Wang et al.

2013), and microwave (MWR) satellite data (Wentz

1997; Wentz et al. 2007). Their characteristics are sum-

marized in Table 1. The 2-hourly GPS and twice-daily

radiosonde data are available at stations over land, and

monthly mean MWR satellite PW data are gridded

onto a 18 3 18 grid over oceans. The GPS PW is derived

from the tropospheric delay of radio signals from the

GPS satellites to the ground GPS receivers and has a

root-mean-square (RMS) error of less than 3mm (Wang

et al. 2007). The 2-hourly GPS PW data have been im-

proved after Wang et al. (2007) by using the zenith

tropospheric delay (ZTD) product consistently re-

processed throughout the period with the same approach

(Wang et al. 2013). Such a consistent reprocessing im-

proves the long-term stability of the GPS PW data and

enhances its value for climate studies. The GPS PW

monthly anomaly time series have been visually exam-

ined, and any sites with obvious discontinuities are not

included in this analysis. Efforts to homogenize the GPS

PW data are also under way (Ning et al. 2016b) and are

beyond the scope of this study. The GPS PW data are

attractive for climate trend analysis because of their long-

term stability and more importantly, because their high

temporal resolution enables us to study the unknown

diurnal asymmetry of the PW trend.

Major artificial discontinuities in the long-term ra-

diosonde records must be removed before they can be

used for climate trend analysis. The radiosonde humid-

ity data used in this study were homogenized using a

statistical approach by Dai et al. (2011), combined with

the removal of the mean bias in the most widely used

radiosonde, Vaisala RS92 (Wang et al. 2013). Two sta-

tistical tests were used to detect changepoints, which are

most apparent in histograms and occurrence frequencies

of the daily dewpoint depression (DPD): a variant of the

Kolmogorov–Smirnov (K–S) test for changes in distri-

butions and the penalized maximal F test (PMFred) for

mean shifts in the occurrence frequency for different bins

of DPD (Dai et al. 2011). Then the breakpoint adjustment

was made using a quantile-matching algorithm. The PW

from the radiosonde data was derived by integrating the

water vapor content from the surface to 100hPa. In cal-

culating the PW trend for 1995–2011 using the GPS and

radiosonde data, we required at least 10 days with data for

monthly mean calculations, at least 2/3 of the months with

valid data (136 months for 1995–2011), and at least 9 years

with data for each month to calculate monthly mean cli-

matology. There were 117 and 554 stations for the GPS

and radiosonde data (Fig. 1), respectively, that met these

requirements and were used in this study.

The MWR satellite PW data were obtained by com-

bining monthly averaged oceanic retrievals of PW into a

single dataset spanning the period from 1988 to 2015. The

data used here were the version-7 retrievals produced by

Remote Sensing Systems and include measurements

made by SSM/I, SSMIS,AMSR-E, andWindSat (Remote

Sensing Systems 2013). Measurements of PW made by

coorbitingmicrowave radiometers are in very good agree-

ment with each other. For overlap time series longer than

24 months, the ocean-only, global-mean vapor trends for

individual satellites differ by less than 0.05mmdecade21

from the multisatellite merged product. The ocean-only

trend in the merged product also agrees to within

0.05mmdecade21 with the trend obtained from the

Tropical Rainfall Measuring Mission (TRMM) Micro-

wave Imager (TMI) over the 388S–388N latitude band

TABLE 1. Characteristics of the datasets used in this study.

Name Spatial coverage

Temporal

resolution

Temporal

coverage Sources

2-hourly GPS PW Global land stations 2-hourly 1995–2015 http://rda.ucar.edu/datasets/ds721.1/

PW (up to 100 hPa) from

homogenized

radiosonde data

Global land stations Twice daily 1973–2012 Data available upon request from

June Wang

MWR monthly mean

PW data

Ocean 18 3 18 Monthly 1988–present ftp://ftp.remss.com/vapor/monthly_1deg/

GHCN-M temperature

dataset

Global land

stations

Monthly 1701–present http://www.ncdc.noaa.gov/ghcnm/v3.php

NOAA gridded monthly

average temperature

anomaly dataset

Global 58 3 58 Monthly 1880–present ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v3/grid/

ICOADS Ocean 18 3 18 Monthly 1960–present http://icoads.noaa.gov/

HadISDH Land 58 3 58 Monthly 1973–2015 http://www.metoffice.gov.uk/hadobs/hadisdh/

HadISD Global land stations Hourly 1973–2015 http://www.metoffice.gov.uk/hadobs/hadisd/
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sampled by TMI (Wentz 2015). The TMI data are not

directly used to construct the merged product and thus

serve as a calibration reference. The consistency in PW

trends among coorbiting radiometers gives us confidence

in the combined MWR satellite PW data.

Two surface temperature datasets (Table 1) were used

to study temperature trends and their correlations with

the PW trends. They include the Global Historical Cli-

matology Network–monthly (GHCN-M) version 3

dataset of monthly mean surface air temperatures,

which was developed based on global land surface sta-

tion data and was improved over its previous versions

with new quality control and advanced techniques for

removing data inhomogeneities (Menne and Williams

2009; Lawrimore et al. 2011). Besides mean surface

temperature, GHCN-M also includes monthly means of

daily maximum and minimum surface temperatures.

The other temperature dataset used here is the NOAA/

NCDC gridded monthly temperature anomaly dataset,

which was created from the Extended Reconstructed

Sea Surface Temperature (ERSST) version 3b (v3b)

over oceans (Smith et al. 2008) and GHCN-M over land.

The station GHCN-M data were matched with the ra-

diosonde or GPS PW data by requiring the station

separation of equal or less than 100 km horizontally and

500m vertically and were used for calculations of the

correlations between station PW and surface tempera-

tures (Tsfc, Tmax, or Tmin). The NOAA/NCDC gridded

data over land were used for global maps and averages

of surface temperature (e.g., see Figs. 4b, 5b, 6, and 7). In

addition, we also include monthly surface temperature

and humidity data over oceans from the International

ComprehensiveOcean–AtmosphereDataset (ICOADS)

release 2.5 on a 18 3 18 grid (Slutz et al. 1985; Woodruff

et al. 2011), monthly mean surface humidity anomalies

from the gridded global land surface humidity dataset

on a 58 3 58 grid (HadISDH) (Willett et al. 2014), and the

hourly surface data at over 6000 global land stations from

the global subdaily station dataset (HadISD) (Dunn et al.

2012) (Table 1). Despite improvements, the latest

ICOADS only samples;50%–60% of the global oceans.

Given the uneven distribution of .3000 land stations

over time and space used to create the griddedHadISDH

data, sampling uncertainty exists and is estimated. (Since

we used the ICOADS and HadISDH data only for

Fig. 10, their spatial sampling issues likely have some

impacts on the conclusions based on Fig. 10.)

Linear trends in this study were calculated using the

Sen estimate of the slope (Sen 1968), which is more ro-

bust than the least squares fitting, especially for skewed

data (Rousseeuw and Leroy 2003). We compared the

PW linear trends derived from the least squares fitting

with that from the Sen method and found (not shown)

that they agree well with each other with a RMS dif-

ference of;0.2mmdecade21, but the Senmethod is less

sensitive to the beginning and ending values for stations

with sparse data.

Collocated GPS and radiosonde stations and MWR

grid boxes were used to compare PW trends from these

independent measurements (Fig. 1). We required the

collocated GPS and radiosonde stations to be within

50km horizontally and 100m vertically, and there were

31 such stations. There were 15 island or coast GPS

stations that had collocated 18 3 18 grid boxes with

MWR PW data available. Monthly mean PW anomalies

were calculated for each dataset by removing its

monthly climatology of 1997–2010 from the monthly

data, and then the linear trend was calculated from the

monthly anomaly series at each radiosonde and GPS

station and MWR 18 3 18 ocean box.

FIG. 1. The locations of the 117GPS stations (circles), the 554 radiosonde stations (crosses), and

the 15 stations (dots) where GPS, radiosonde, and MWR data are all available.
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The PW trends from 1995–2011 and 1988–2011 at the

554 radiosonde stations were first computed and then

gridded onto a 0.58 3 0.58 grid using a search radius of

1000km using inverse distance–weighted averaging of

all station data within the radius. Atmospheric temper-

ature and humidity fields have a spatial correlation dis-

tance around 1000–1200 km, which is often used as the

search radius in gridding their anomalies (Mitchell and

Jones 2005). Then the values on all 0.58 grid boxes within
each 2.58 box were averaged to derive PW anomalies

on a 2.58 3 2.58 grid. The same gridding method was

applied to the PW versus Ts correlation coefficients and

the d lnPW/dTs ratio over land shown in section 4. Since

the Ts data over oceans are on a 58 3 58 grid, the MWR

data on a 18 3 18 box are first averaged onto a 58 3 58 grid
box to calculate the correlation and ratio over oceans

shown in section 4. Time series of global-mean monthly

PWanomalies from the radiosonde andMWRdata shown

in Fig. 6 were computed from gridded anomaly data using

gridbox area as weighting, while the mean PW time series

for GPS were derived simply by averaging over all the 117

stations given their limited spatial coverage.

3. Global PW trend analysis

Figure 2 presents two examples from two island sta-

tions (MacQuarie Island and Bermuda), where PW data

are available from all three datasets. The three PW time

series are highly correlated with a correlation coefficient

r exceeding 0.8 at both stations, which is statistically

significant above the 99% level (Fig. 2). This is also true

for other collocated stations, with the r between GPS

and MWR being higher than that between GPS and

raob (Fig. 3a). For the MacQuarie Island and Bermuda

stations, the PW trends for 1995–2011 derived from the

GPS data have much larger magnitudes than that from

the radiosonde and MWR (Fig. 2). For Bermuda, the

larger negative PW trend from the GPS data might be

due to the inhomogeneity in theGPS data (a drop in PW

around February 2007), which is evident in comparisons

with MWR and radiosonde data (see Fig. S2 in Mears

et al. 2015).

The PW trends from 26 collocated radiosonde and

GPS sites (21 sites for MWR vs GPS) are compared in

Fig. 3. Five other collocated GPS-radiosonde stations

are excluded in Fig. 3 because of sparse observations,

unrealistically large trends in the radiosonde dataset, or

large differences in radiosonde trends between 1995–

2011 and 1973–2011. The PW trends from the collocated

GPS and radiosonde or MWR sites are correlated, al-

though the correlation of 0.36 between the GPS and

radiosonde trends is insignificant (Fig. 3b). However, the

trends are relatively weak in these short records (1995–

2011) with large short-term variations, and most of them

FIG. 2. Time series of monthly PW anomalies for 1995–2011 from the GPS (blue), MWR

(red), and raob (black) observations at (a) MacQuarie Island (54.58S, 158.948E) and

(b) Bermuda (32.378N, 64.688W). The PW linear trends (mmdecade21) and correlation co-

efficients between GPS and MWR or raob are given in the legends.
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are statistically insignificant (i.e., resulting from random

noises that should reduce the correlation among the

three datasets). Nevertheless, the spatial variations in

the PW trends from 1995 to 2011 are generally consis-

tent among the three datasets. Some of the scattering in

Fig. 3b likely results from large uncertainties in trend

estimates as a result of the short record length (17 years),

large interseasonal and interannual PW variability, and

potential inhomogeneity in the GPS PW data. In sum-

mary, the strong correlation between the GPS and ra-

diosonde orMWRmonthly PWanomaly time series and

the broad agreement in their linear trends encourage us

to use the three datasets together in space (but not in

time) to study PW trends from 1995 to 2011 over the

globe. Note that the three datasets were not merged in

time at any given location and not averaged at any given

time and location.

The gridded PW trends from 1995 to 2011 from ra-

diosonde data over land were merged with that over

oceans derived from the MWR data to create a com-

bined map of PW trends from 1995 to 2011 (Fig. 4a).

This allows us, for the first time, to estimate PW trends

over the whole globe (besides the polar regions) using

observational data. The trends derived from the GPS

data at 117 stations are also presented in Fig. 4a by the

colored circles. The PW trends from the GPS data are

generally in agreement with the radiosonde or MWR

data (see discussions above). The homogenized radio-

sonde data show spatially coherent trends over land,

such as positive trends over inland Australia but nega-

tive trends along its western coasts. In addition, consis-

tent trends along coastal areas are seen between the

radiosonde and MWR data. Some island and coastal

radiosonde stations over the western Pacific region show

large negative trends that are inconsistent with the sur-

rounding regions. Visual examination of the radiosonde

PW data indicated that the decreasing trends resulted

from apparent PWdrops sometime after 2008, which are

most likely associated with radiosonde type changes.

Note that the homogenization was only done for dis-

continuities at least 12 months before February 2009 by

Dai et al. (2011). Therefore, these radiosonde stations

with potential discontinuities after 2008 in the western

Pacific were not included in our global land PW trend

analysis (as shown in Fig. 6).

Figure 4a shows that PW trends over land are positive

along the coast of theU.S. Northeast and Eurasia as well

as the interior of Australia and Europe. The PW trends

over the Pacific Ocean show a ‘‘sandwich’’ shape with

positive trends in the narrow intertropical convergence

zone (ITCZ) bounded by negative trends to the north

and south. The negative trends expand to cover most of

the eastern Pacific around the western coasts of the

Americas. Even larger positive PW trends are seen over

the central North and South Pacific and the western

tropical Pacific (Fig. 4a). Using MWR PW data from

1988 to 2003, Trenberth et al. (2005) also showed posi-

tive PW trends over the Pacific ITCZ and the North and

South Pacific but with fewer drying areas over the Pacific

compared with Fig. 4a. They concluded that the 1988–

2003 PW trend is explained largely by the change asso-

ciated with the 1997/98 El Niño that appears to concur

with a phase change of the interdecadal Pacific oscilla-

tion (IPO) from a warm period from 1977 to 1998 to a

cold phase from 1999 to present (Dai 2013; Dong and

Dai 2015). This suggests that PW trends for the recent

periods that include the 1997/98 event will likely be

similar, which is confirmed by our comparisons of trends

FIG. 3. (a) Comparisons of correlation coefficients between GPS

and raob PW monthly anomaly time series from 1995 to 2011 and

that betweenGPS andMWRat nine stations where all three datasets

are available. (b) Comparisons of the 1995–2011 PW trends

(mmdecade21; estimated from monthly anomalies) between the

GPS and raob (circles) or MWR (crosses) data at 26 (for raob) or

21 (for MWR) collocated stations, respectively. The correlation

coefficients are given in the legend.
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for 1995–2011 and 1988–2011 (Fig. 5a). TheAtlantic and

Indian Oceans are dominated by moistening trends. The

general patterns of the PW trends over oceans are

consistent with those shown in IPCC AR4 (Trenberth

et al. 2007) and AR5 (Hartmann et al. 2013) for the

periods of 1988–2004 and 1988–2012, respectively, using

the MWR data.

The PW trend map for 1988–2011 was also computed

using the radiosonde andMWRdata (Fig. 5a). Figure 5a

shows smoother spatial patterns than the 1995–2011

trend map (Fig. 4a), but the two are largely similar.

Compared with Fig. 4a, Fig. 5a has more uniform posi-

tive values over land and smaller magnitudes over the

Pacific and Indian Ocean, as the trends estimated using

the shorter records likely contain more noise. This sug-

gests that the moistening trend over land is likely to be

more robust in the longer records. This is further sup-

ported by the domination of positive trends for 1973–

2011 in the radiosonde data (not shown). The spatial

patterns of the PW trends over oceans are quite stable

for 1995–2011 and 1988–2011, but the amplitudes of the

trends are more pronounced for the shorter period

(Figs. 4a and 5a).

Time series of global-mean monthly PW anomalies

were derived from the GPS, radiosonde, andMWRdata

(Fig. 6). It is evident that global-mean PW increases

generally with time over both land and oceans during

recent decades, at a rate of 0.266 0.08, 0.246 0.03, and

0.34 6 0.04mmdecade21 based on the GPS (1995–

2011), radiosonde (1973–2011), and MWR (1988–2011)

data, respectively (Fig. 6). The trends are statistically

significant at the 5% level for radiosonde andMWR but

at the 10% level for GPS. Despite the limited spatial

coverage of the GPS data (only 117 stations; cf. Fig. 1),

they show interannual variations and long-term changes

similar to those in the radiosonde data (Fig. 6a). The PW

trends are smaller over land than over oceans and during

1995–2011 than 1988–2011 (Fig. 7).

We emphasize that the PW trend estimates for the

recent decades are likely influenced by considerable

FIG. 4. (a) Global maps of PW trends from 1995 to 2011 estimated based on PW data from

117 GPS (circles) and 554 radiosonde stations over land and MWR data over oceans. (b) As in

(a), but for Ts based on NCDC gridded Ts data. The stippled areas represent statistical sig-

nificance at the 5% level.
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sampling errors and large interannual variations (Fig. 6),

which are usually linked to ENSO events, such as the

maxima in 1987/88, 1997/98, and 2009/10 associated with

ElNiño events and theminima in 1988/89, 1992/93, 1999/

2000, 2007/08, and late 2010/11 associated with La Niña
events (Fig. 6). The PW and temperature decreases

during 1992/93 are also likely caused by the cooling in-

duced by the Pinatubo volcanic eruption in June 1991

(Trenberth and Dai 2007).

4. PW–temperature relationship

The PW trends and interannual variations are corre-

lated with temperatures, as shown previously (e.g., Zhao

et al. 2012). Here we discuss the PW versus surface

temperature Ts relationship briefly, based on Figs. 5, 6,

and 8. Figure 5 shows that the areas with large positive

PW trends generally have warming trends, such as the

U.S. Northeast, Europe, Australia, the central North

and South Pacific, and the southern Indian Ocean. Over

the tropical central and eastern Pacific and a few other

regions (e.g., central Asia), some cooling occurred

during 1988–2011 primarily because of the phase change

of the IPO from the peakwarm phase around 1993 to the

near-lowest cold phase around 2012 (Fig. 5b; Dai 2013;

Dai et al. 2015; Dong and Dai 2015). Associated with

this cooling, PW also decreased or changed little over

these regions, except the Pacific ITCZ where PW in-

creased for reasons unknown. Despite this inconsis-

tency, overall the PW and surface temperature trend

patterns for 1988–2011 (Fig. 5) are positively correlated

with a spatial correlation coefficient of 0.44, as one

would expect from the fact that atmospheric relative

humidity usually changes little (Dai 2006; Zhao et al.

2012), while saturation vapor pressure increases with air

temperature. We analyzed surface humidity data and

found that the trend patterns for surface specific hu-

midity during 1988–2011 (not shown) are correlated

with surface temperature trend patterns shown in Fig. 5b

(r5 0.89). Physically, PW should correlate more closely

with lower-tropospheric temperature rather than sur-

face temperature, as shown in Zhao et al. (2012) over

China. Figure 7 shows that surface warming over land is

more than twice that over ocean for both the 1995–2011

FIG. 5. As in Fig. 4, but for the period from 1988 to 2011 and using radiosonde and MWR PW

data only. The stippled areas represent statistical significance at the 5% level.
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and 1988–2011 periods, while the PW trend is larger over

ocean than over land. The correlation between PW and

Ts monthly anomalies is positive and statistically sig-

nificant over most regions except China, the U.S.

Southwest, and the Amazon (Fig. 8). Zhao et al. (2012)

showed that the PW and surface air temperature

anomalies averaged over all of China for 1970–2008 are

highly correlated. Such an inconsistency with Fig. 8 is

mainly due to much weaker correlation between PW

and Ts at individual stations than regional averages. We

also found the same correlation coefficient of 0.76 as

Zhao et al. (2012) for time series of 11-point moving-

averaged PW and Ts anomalies averaged over China for

1973–2011. The correlation also becomes smaller for

1995–2011 and 2008–11 (0.5 and 0.45, respectively). As

discussed later (see Fig. 10), the negative correlations

between surface RH and Ts in China, the U.S. South-

west, and the Amazon can also partially explain the

weaker correlations between PW and Ts shown in Fig. 8.

Globally averaged land and ocean PW and Ts monthly

anomalies are also significantly correlated, with stronger

correlation over ocean than over land (Fig. 7).

As discussed in the introduction, the scaling ratio of

the relative PW change with temperature d lnPW/dT is

often computed and used as a proxy for the increasing

rate of atmospheric water vapor under global warming.

FIG. 6. Time series of global-mean monthly PW and Ts (blue line) anomalies over (a) land from the GPS (1995–

2011) and raob (1973–2011) records, and (b) oceans from MWR (1988–2011). An 11-month running mean was

applied to all the time series. Trends are calculated for the whole data period. Trends and correlation coefficientsR

between PW and Ts are given in the legends. Gray horizontal solid and dashed lines define zero values for the right

and left y axes, respectively.

FIG. 7. Comparisons of PW trends, Ts trends, and correlation

coefficients between PW and Ts using raob and MWR data for the

1995–2011 and 1988–2011 period. The colors for the Ts trend and

CC (PW vs Ts) only refer to the time period shown in the legend.
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If RH does not vary with temperature, then the scaling

ratio should be around 7%K21 using typical globally

averaged tropospheric temperatures. Previous studies

have calculated this ratio using global and regional mean

PW and temperature values and obtained a ratio around

6%–7%K21 (e.g., Trenberth et al. 2005; Zhao et al.

2012). There are several questions associated with this

simple scaling ratio: 1) Does RHvary with temperature?

2) On what temporal and spatial scales should the ratio

be calculated? 3) Should surface temperature or lower-

tropospheric mean temperature be used? And 4) how

does the ratio vary spatially?

Here, we calculated this ratio using least squares lin-

ear fitting of the monthly relative PW and Ts anomalies

during 1988–2011 at each 58 3 58 box over ocean and at

each radiosonde station over land and then mapped the

ratio onto a 2.58 3 2.58 grid (see section 2; Fig. 9). Thus,

the scaling ratio shown in Fig. 9 is based primarily on the

interannual variations (but any long-term changes are

also included). Figure 9 shows that the d lnPW/dTs ratio is

generally larger over ocean than over land, and it tends to

be above or around the expected value (;7%K21) from

theC–C relation over oceans but well below 7%K21 over

many land areas. The ratio ranges from 4% to 6%K21

over the North Pacific and Southern Ocean to 10%–

14%K21 over most tropical oceans. Over land, it is

generally lowest over arid to semiarid areas, such as the

Tibetan Plateau (;2%K21) and southwestern North

America (2%–3%K21); however, the low values over

northeastern South America may result partly from

large sampling errors due to sparse data there. The land–

ocean discrepancy and the spatial variability of this ratio

are presumably associated with RH changes with tem-

perature and the usage of Ts instead of the tropospheric

air temperature Ta. Given that d lnPW/dTs ’
(d lnqs/dTs) 1 (d lnRH/dTs), where qs is saturation

FIG. 8. Map of correlation coefficients between monthly PW and Ts anomalies from 1988 to

2011. The stippled areas represent statistically significant correlations at the 5% level.

FIG. 9. Map of the scaling ratio of the percentage PW change with Ts (%K21) using the linear

least squares fitting of the anomaly data from 1988 to 2011.
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specific humidity, and ignoring the difference be-

tween changes in Ts and Ta, for a d lnPW/dTs ratio

above 7%K21, RH has to increase with temperature,

while RH should decrease with temperature where this

ratio is below 7%K21. To better understand the pattern

of d lnPW/dTs, we calculated d lnRH/dTs using monthly

anomalies of surface RH (which may not reflect lower-

tropospheric RH) and Ts for 1988–2011 (Fig. 10a), as

observational data for global tropospheric RH andT are

not readily available. The land–ocean contrast and me-

ridional variability of RH changes with Ts are generally

consistent with what O’Gorman and Muller (2010)

found from climate model simulations. Over oceans,

RHs decrease with surface air temperature in the tropics

but increase in the extratropics (Fig. 10a). The positive

RH–Ts relationship in the subtropical ocean contributes

to the .7%K21 d lnPW/dTs ratio shown in Fig. 9.

However, it is not clear why the signs and spatial pat-

terns of d lnRH/dTs are not correlated with that of

d lnPW/dTs in the tropical ocean, although sampling

errors in the ICOADS data are large over tropical

oceans. O’Gorman and Muller (2010) showed that the

RH change rate with temperature at 500 hPa over

tropical oceans is positive and larger than that at the

surface. Therefore, the RH change with temperature in

the lower troposphere and its contribution to

d lnPW/dTs require further investigation. Over land,

surface warming often leads to lower RH as surface

evaporation cannot match atmospheric demand for

moisture, which is confirmed by the negative RH–Ts

relationship in Fig. 10a. Therefore, the d lnPW/dTs ratio

below 7%K21 over the majority of land can be ex-

plained by decreasing RHs with temperature.

The results from prior studies also shed light on what

causes the observed d lnPW/dTs ratio shown in Fig. 9.

Based on climate model simulations of the twenty-first-

century climate, O’Gorman and Muller (2010) found

that the d lnPW/dTs ratio has a strong dependence on

FIG. 10. (a) Map of the ratio of the percentage RH change with Ts (%K21) using the linear

least squares fitting of the anomaly data from 1988 to 2011. (b)Map of RH trends (%decade21)

from 1988 to 2011. The HadISDH dataset is used for land and the ICOADS dataset for oceans.

The dotted boxes represent statistical significance at the 5% level.
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latitude and is larger in the tropics but smaller in the

subtropics and midlatitudes than the C–C expected

value. Deviations from the C–C value were attributed to

decreases in RH with temperature at 500hPa in the

subtropics and midlatitudes and increases in the deep

tropics (O’Gorman and Muller 2010). Wentz and

Schabel (2000) concluded that the scaling of PW with Ts

is larger than that with Ta over oceans mainly because

the interannual change of Ta is larger than that of Ts.

Also, greenhouse gas–induced long-term warming is

larger in the troposphere than at the surface in the low

latitudes (Myhre et al. 2013). Another feature displayed

in Figs. 8 and 9 is that there is no significant correlation

between PW and Ts and very low (2%–3%K21)

dlnPW/dTs ratios over southwestern North America

whereas the northern and eastern United States show

dlnPW/dTs values close to the C–C ratio. These results

are consistent with the strong negative RH–T correla-

tion at the surface over the southwestern United States

but negligible correlations at the same level in the

eastern United States (Fig. 10a). Ross et al. (2002)

showed similar spatial contrast in RH–T correlations at

850 hPa and attributed such a spatial pattern to the

sources of airflow. There are relatively warm and moist

airflows from the south or cold and dry flow from the

north in the eastern United States, but air flows over the

arid western United States are from subsidence and are

characterized by approximately constant specific hu-

midity and negative RH–T correlations (Ross et al.

2002). However, we think that surface soil moisture and

evaporation may also be important in modulating the

RH–T and PW–T relationships (Dai et al. 1999; Durre

and Wallace 2001). Over the Tibetan Plateau and East

Asia, both the PW–Ts or RH–Ts correlation and

dlnPW/dTs or dlnRH/dTs ratio are low (Figs. 8 and 9).

This may also be related to low evaporation over the dry

Tibetan Plateau and downslope winds from the plateau

to surrounding areas in the lower troposphere. Further

investigations are needed on this unusual regional fea-

ture that appears to be robust.

5. Diurnal asymmetry

It is well known that surface diurnal temperature

range (DTR) has decreased worldwide since the 1950s

because of the larger warming in daily minimum tem-

peratures Tmin than in daily maximum temperatures

Tmax (e.g., Karl et al. 1993; Easterling et al. 1997; Vose

et al. 2005). Given the strong connection between tem-

perature and water vapor, one might expect a diurnal

asymmetry in water vapor variations and trends. The

high-resolution GPS PW data make it possible to study

the diurnal asymmetry of the PW trends and PW–Ts

scaling ratios. Figure 11a compares the daytime

[0700–1900 local solar time (LST)] and nighttime

(1900–0700 LST) PW trends for 1995–2011 at the 117

GPS stations. The PW trends are consistently larger at

night than during the day at 91% of the stations.

We computed the PW trend for each observation time

using the 2-hourly PWdata at eachGPS station and then

fitted the diurnal variations in the PW trend using the

diurnal (24h) and semidiurnal (12h) harmonics, following

FIG. 11. (a) GPS PW trends (mmdecade21) from 1995 to 2011

for daytime (x axis) and nighttime (y axis). Solid circles and crosses

are for sites with and without surface temperature data, re-

spectively. (b) Tmin and Tmax trends (K decade21) at 49 sites where

surface temperature data are available.
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Dai et al. (2002). At 66% of the stations, the diurnal

cycle dominates the subdaily variability in the PW

trends and explains 42% of the subdaily variance (only

;7% by the semidiurnal cycle) when averaged for all

those stations. For example, at station DRAO (Pentic-

ton, Canada; 49.328N, 119.628W), the diurnal cycle ex-

plains 98.16% of the subdaily variability of the PW

trend, while the contribution of the semidiurnal cycle is

negligible (0.24%) (Fig. 12a). The PW trend peaks

at night with a mean amplitude of 0.17mmdecade21

(Figs. 12b,c).

A detailed investigation of the causes of the PW trend

diurnal asymmetry is beyond the scope of this study.

Here we only provide a qualitative explanation and

some hypotheses. The PW is the integration of specific

humidity q, which depends on both temperature and

RH, and is controlled by q both near and above the

surface [mainly the lower troposphere (LT)]. If the at-

mosphere is simplified into the surface layer and LT,

four variables would affect the PW trend:T andRHnear

the surface and in the LT. It getsmore complicatedwhen

we try to explain the diurnal asymmetry of the PW trend

since the variable with the largest impacts on the PW

trend may not be the one contributing most to the ob-

served PW trend asymmetry. Here we study two vari-

ables, near-surface temperature and specific humidity.

Vose et al. (2005) found that global land averaged

Tmin increased at a faster rate than Tmax from 1950 to

2004, but their warming trends are comparable from

1979 to 2004. Rohde et al. (2013) also found that the

FIG. 12. (a) Diurnal variations of 2-hourly PW trends at the DRAO GPS site and the decomposed diurnal (S1)

and semidiurnal (S2) components and the sum of two. The percentage of the variance explained by S1, S2, and S11
S2 are also given in the legend.Histograms of (b) the phase (LST of themaximum in hours) and (c) amplitude of the

diurnal harmonic of the PW trend for all 117GPS stations. Themean and standard deviation among the stations are

given in the legend.
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global land DTR decreased from 1900 to 1987, and

thereafter it increased to 2011. We looked at the Tmax

and Tmin trends during 1995–2011 at 49 GPS stations

where nearby surface weather stations with Tmin and

Tmax data were found within 100km horizontally and

500m vertically (Fig. 11b). The PW trends were found

consistently larger during nighttime than daytime at

these stations (Fig. 11a) but not for surface temperature

(Fig. 11b). Thus, the recent DTR trend cannot explain

the diurnal asymmetry in the PW trend.

We also examine the HadISD data at 30 stations

where nearby GPS stations were found within 100 km

horizontally and 500m vertically. The comparisons of

PW and surface specific humidity q trends between

daytime and nighttime show that the trends are gen-

erally positive for PW but negative for surface q. It

implies that the PW trend is likely related more to the

temperature and humidity trends in a deeper lower-

tropospheric layer and less impacted by the surface

layer at these sites. Upper-air observations are needed

to understand the q trends in the lower troposphere. An

update of the homogenized radiosonde humidity data

from Dai et al. (2011) is needed for this and other an-

alyses. This is a major effort that is beyond the scope of

this study.

The close association between PW and surface tem-

perature has been presented and discussed in section 4.

The remaining question is how such a relationship

changes diurnally. Figure 13 shows the correlation co-

efficients between daytime PW and Tmax and between

nighttime PW and Tmin. The correlation at night is

positive, statistically significant, and systematically stron-

ger than that during daytime. The daytime correlation

between PW and Ts is negative at some stations and often

insignificant, implying that other factors such as clouds

and surface evaporation are important [e.g., through their

impacts on daytime Ts; Dai et al. (1999)]. These results

suggest that the relationship between PW and Ts at night

is a better indicator of water vapor feedback (i.e., the

coupling between Ts and water vapor content). Another

interesting feature from Fig. 13 is that the day and night

correlation coefficients are not strongly related at the

stations; that is, a strong nighttime PW–Tmin correlation is

not usually associated with a strong daytime PW–Tmax

correlation at the same station. This again suggests that

different mechanisms govern the PW–Ts relationship

during day and night. Such a diurnal asymmetry in the

PW–Ts correlation is also reflected in the scaling ratio

d lnPW/dTs (Fig. 14). The ratio with Tmin is larger than

that with Tmax and is closer to the C–C implied value

(;7%K21). The ratio with Tmax is smaller than the C–C

implied value at most of the 49 stations and has a wider

distribution, which suggests larger spatial variability and

that the ratio is less constrained to the C–C relationship.

As mentioned above and studied previously (e.g., Dai

et al. 1999), other factors such as clouds, aerosols, sur-

face evaporation, and surface albedo can modulate

maximum daytime Tsmore than minimum nighttime Ts.

This greatly weakens the coupling between water vapor

and daytime Ts through longwave radiation because

these other factors are often not correlated with atmo-

spheric water vapor content. On the other hand, at night

the shortwave effects disappear and surface evaporation

is minimal (Dai et al. 1999), making the longwave

greenhouse effect of water vapor a dominant factor

(Zhang et al. 1995) that regulates nighttime Ts. This

FIG. 13. Scatterplot of correlation coefficients between nighttime

PW and Tmin and between daytime PW and Tmax monthly anom-

alies from 1995 to 2011 at the 49 stations with data. The gray di-

agonal line is the one-to-one line.

FIG. 14. Histograms of the scaling ratio d lnPW/dTs (%K21) at

49 GPS stations calculated from monthly anomalies from 1995 to

2011 of all-time PW and Ts (black, gray area), daytime PW and

Tmax (red line), and nighttime PW and Tmin (blue line).
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qualitatively explains the stronger correlation between

PW and Ts and the dlnPW/dTs ratio being closer to the

7%K21 at night than during the day. The additional

factors influencing the daytime PW–Ts relation also

imply a wider distribution of dlnPW/dTs during the day.

6. Summary and discussion

To study water vapor changes over the globe, we

have compared and used three global precipitable

water (PW) datasets from homogenized radiosonde re-

cords, 2-hourly ground-based GPS measurements, and

the newest version of satellite MWR observations. The

combination of three PW datasets makes it possible to

provide near-global estimates of the PW trend from

1988 (or 1995 for the GPS data) to 2011 over both land

and ocean and to study the relationship between the PW

and surface temperature Ts and the diurnal asymmetry

in the PW trend and the PW–Ts relationship. General

agreements are found in the PW trend and its spatial

variations among the three datasets at collocated sta-

tions. Main results are summarized below.

During the recent decades, PWhas increasedwith time

over both land and ocean regardless of the time period

and dataset analyzed, with a global-mean trend of 0.26,

0.24, and 0.34mmdecade21, respectively, in the GPS

(1995–2011), radiosonde (1973–2011), and MWR (1988–

2011) records. The PW trends are smaller over land than

over ocean, and they are smaller during 1995–2011 than

1988–2011, which is consistent with the slowdown in the

global warming rate since around 2000 (Trenberth and

Fasullo 2013; Dai et al. 2015). PW generally increased

from 1988 to 2011 over Eurasia, inland Australia, many

parts of North America, and most oceans except parts of

the eastern and low-latitude Pacific where both PW and

Ts decreased as a result of the IPO phase change around

1999 (Dai 2013; Dai et al. 2015; Dong and Dai 2015).

Global-mean PW monthly anomaly is well correlated

with Ts on interannual to decadal time scales over both

land and ocean, and the areas with positive PW trends

generally showwarming trends inTs. The scaling ratio of

the PW percentage changes with Ts (d lnPW/dTs) shows

large spatial variations, with generally larger values over

ocean than over land. This ratio ranges from about 4%–

7%K21 over oceans poleward of 308 in both hemi-

spheres to 10%–14%K21 over most tropical oceans, but

it is below the expected value (;7%K21) from the

Clausius–Clapeyron relation over most land areas. The

spatial variations in this scaling ratio are qualitatively

consistent with model simulations (O’Gorman and

Muller 2010) and are partially related to the differences

in RH changes with surface temperatures over different

regions.

The high temporal resolution of the GPS PW data

made it possible to study the diurnal variations in the

PW trends and the PW–Ts relationship. It is found that

the 1995–2011 PW trend at night is well correlated with

that during the day, but it is consistently larger at night

than during the day. The correlations between PW and

Ts monthly anomalies during 1995–2011 also behave

differently between day and night, with significant and

positive PW–Ts correlations at all stations at night but

often insignificant and lower PW–Ts correlations during

the day. This day–night difference in the PW–Ts re-

lationship is attributed to additional impacts from

clouds, aerosols, surface evaporation, and surface al-

bedo on Ts (but not directly on PW except evaporation)

during the day that should weaken the coupling between

water vapor andTs. The PW–Ts scaling ratio d lnPW/dTs

at night is also found to be larger and closer to the C–C

implied value of 7%K21 than that during daytime.

Despite our efforts to combine different observations,

large data gaps still exist over Africa and South America

(Figs. 4 and 5). The cost-effectiveness, availability under

all weather conditions, and unmanned operations of

ground-based GPS PW measurements make it appeal-

ing to install more ground-based GPS receivers over

those regions. International collaborations and support

are required for such an effort. Diurnal variations in

water vapor, its trends, and its relationship with tem-

perature had remained largely unknown because of a

lack of high temporal sampling in conventional radio-

sonde and satellite observations. This study took ad-

vantage of the high temporal resolution of the GPS PW

data to study the diurnal asymmetry in PW trends and its

correlation with Ts. However, continuous long-term

records of GPS PW data are only available at ;117

stations. Therefore, it is essential to reduce the data gaps

in the GPS PW data and to maintain its quality, espe-

cially its temporal homogeneity as its record is

getting longer.

Temporal homogeneity of climate records is most

important for estimating long-term trends (Dai et al.

2011; Bodeker and Kremser 2015), while measurement

uncertainties are important for estimating values for

individual months or years. The well-characterized and

traceable estimate of the measurement uncertainty is

nontrivial. Global Climate Observing System (GCOS)

Reference Upper-Air Network (GRUAN) is pioneer-

ing in providing such an estimate for certain radiosonde

types (Immler et al. 2010; Dirksen et al. 2014; Bodeker

et al. 2016). In this study, we have used homogenized

radiosonde PW data records but had very limited in-

formation about the uncertainties in the PW data over

the globe. The homogenization removes the major dis-

continuities resulting from changes in sampling or
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instrumental biases over time. Thus, our use of homog-

enized PW data has largely removed the effect of time-

varying measurement uncertainties on the estimated

trends, as the remaining randommeasurement errors or

constant biases should have very small effects on the

estimated trends. Nevertheless, more efforts, such as

GRUAN, are needed to estimate the uncertainties in

the PW records from GPS, radiosondes, and MWR

satellites. The radiosonde and GPS PW uncertainties to

be included in the GRUAN data products (Dirksen

et al. 2014; Ning et al. 2016a) will be helpful for PW

homogenization and thus trend analyses. In addition,

an updated and improved version of the homogenized

radiosonde dataset of Dai et al. (2011) is also needed.

Efforts to homogenize the GPS PWdata are also under

way (Ning et al. 2016b).

The positive water vapor feedback plays an important

role in amplifying the anthropogenic greenhouse effect,

but its amplitude still remains quite uncertain (Held and

Soden 2000). Our findings of larger PW trends and

better correlation between PW and surface temperature

at night than during daytime suggest that the relation-

ship of nighttime PW and Ts is a better indicator of the

coupling between water vapor and Ts, and thus the

nighttime data should be used to understand the water

vapor feedback. Finally, although we have discussed the

day–night differences in the PW trend and the PW–Ts

relationship and possible causes, more analyses are

needed to fully understand the diurnal asymmetry found

in this study.
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